
CIAO

TECHNICAL REPORT ARBRL-TR-0202

TWC-DIMENSIONAL MODEL FOR ARC DYNAMICS

IN THE RAIL GUN

k John D. Pmell

DTIC
ELECTE

October,1982 SOCT I8 fl

B

us AUI NoAEI
BALLISTIC RESEARCH LAOORATC3RY

LipASRDWEN PROVMN GROUND, WARYLAWI

Depovod ftr Pi~lic ,.eau.~t distributION &mf~dt"sd

.1L



UNCLASSIFIED ____

SECURITY CLASSIFICATION OF THIS PAGE ("I~an 040 a ?ulermd

REPORT DOCUMENTATiON PAOE SEFORZ ,MPENGFR
1. AEPORT WUMVIN 2. GOVT ACCESSION NO.ý -. RECIPIENT'L C tALOG NUMS101

c. TITLE (mid &.&tiue) S. TYPE Of REPORT A PERIOD COVRAZO
TWO-DIMENSIONAL MODEL FOR ARC DYNAMICS IN THE
RAIL GUN _____________

6. PERFORMING OttG. REPORT NUM11ER1

I. AUTI4OR(mi) A. CONTRACT OR 6RANY NtIMSERre)

John D. Powell

6. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJE~CT, TASK

US Army Ballistic Research LaboratoryARA6WKUNTUMxS
ATTN: DRDAR-BLB RDT&E 1L161102AH43
Aberdeen Proving Ground, MD 21005S__________________

I 1, CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

US Army Armament Research & Development Command - October 1982
US Army Ballistic Research Laboratory (DRDAR-BL) 2- HUMMER or PAGES

Aberdeen Proving Ground, MD 21005 49__________
14. MONITORING AGENCY NAME & AOCREUS(it diff erent hrom Ccritro~lltng Clies) IS. SECURITY CLD AS. (of this report)

UNCLASSIFIED

0S.. ECL ASSI Ic-ATION DOWNG-~~RADINO
SCHEDULE

16, tCISTRI9UTION STATEMENT (at tMle R6"o$)

Approved for public release; distribution unlimited.

17. DIST RISUTION ST ATEM ENT (of the abstract entered In block 20, It differeit from Raedor)

1S. SUPPLEMINTARY NOTES

1S. KEY WORDS (Continue on1 ,gv.,e side It necessay aid Identify by block number)

Electric gun, rail gun, electrom&gnetic propulsion, plasma dynamics, fluid
mechanics

ft ASforACT (Camthue on rovrs &I& Wt umesawy a" ldit7 by black nmum&) i)
A two-dimensional model is suggested for describing the fluid-mechanical, el.ec-
trodynamical properties of the plasma in an arc-driveii rail gun. The analysis
includes deriving a set of general, time-dependent equations, the solution of
which yi~elds the associated properties of the arc. These equations are then
solved under the assumptions tIzat the flow variables are steady in a frame of
reference which accelerates with the are, and that the effect of 'L-he arc's
acceleration upon these variables can be neglected. (Continued)

DD IM47 EDt1'OM OF IN1OV 655 ISSOMLETIE UNCLASSIFIED
SeCtIlRY? CLASSIFICATION OF 'THIS PAGE (Ubmnt Datai Eaitere



UNCLA•STPID ,
,ZCUVJTY Ct,ANIFICATI@o OVP T.IS PAORM1,, Da mS

Numerical calculations are carried out to analyze arcs in both recent and pro-
posed experiments. In addition to the numerical calculations, some approximate
analytic solutions, which are applicable under certain limiting conditions, are
also worked out. These limiting-case solutions are then used to derive a set
of scaling relations which indicate how the arc properties vary with gun size,
rojectile mass, and acceleration characteristics. Considerable discussion of
the assunmtions and the results is given, emphasizing particularly the physical
reasons for the differences with previous one-dimensional calculations.

IV

UNCLASSIFIED

SECURITY CLASSIFICATION Of THIS PAGM(Wami DVMS enierod)

-J VS. . - ..., ,•,,,• ,. "'• - 1 . .. I " - • l [ -••i , , -: ,



TABLE OF CONTENTS Page

LIST OF FIGURES .R. ............. ...................... 5

LIST OF TABLES .................. ......................... 7

I. INTRODUCTION .................. .......................... 9

II. MATHEMATICAL FORMALISM ............ ..................... 12

III. SOLUTION OF EQUATIONS ..................... 18

A. General Remarks and Additional Approximations ....... 18

B. Limiting-Case Analytic Solution ......... ............. 20

1. Case I ................ ........................ .. 22
2. Case II ........... ........................... 23
3. Comparison of Two Solutions ......... .............. 23

C. Numerical Technique ........... ..................... 24

D. Analysis of Rashleigh-Marshall Experiment ............. .25

E. Analysis of Westinghouse Experiment ....... ............ 33

F. Scaling Relations and Optimum Arc Materials ........... .35

IV. DISCUSSION .................. .......................... .. 39

ACKNOWLEDGEMENT ........................... .......... 43

REFERENCES ..................... ........................... .. 45

DISTRIBUTION LIST .............. ...................... .47

Accession For
NTIS GRA&I

DTIC TAB El
Unannounced

"10 0 Justiffication_

S~B.

Di stri but ion/

Availabil ity Codes

Dist Avil and/or
Dis ~Special.



LIST OF FIGURES

Figure Page

1. Model for Arc Calculations ........ ................... .... 11

2. Pressure, in Pascals, as a Function of C .... ............ ... 28

3. Magnetic Induction Field, in Tesla, as a Function of . ...... 29

4. Lines of Constant Temperature, in Degrees Kelvin, Within the Arc 30

35. Lines of Constant Mass Density, in kg/m , Within the Arc .. . 31

-36. Lines of Constant Electron Density, in m , Within the Arc . . 52

I

:4

IJ
I1

)] . .. . .



LIST OF TABLES

Table Pae

I Experimental Data for Rashleigh-Marshall Experiment ......... .. 26

II Results of Numerical Calculations for Rashleigh-Marshall Experi-
ment ............... ............. .............. ...... .... .. 27

III Experimental Data for Westinghouse Gun ..... ............. .. 34

IV Results of Numerical Solution for Westinghouse Gun .......... .. 34

V General Scaling Factors .............. .................... .. 36

VI Scaling Factors as a Function of Arc Length .... ........... .. 37

VII Comparison of Numerical and Scaling-Relation Results for Westing-
house Experiment ................. ........................ .. 38

7/t



I. INTRODUCTION

In some recent work, we exposed a one-dimensional model and developed
a formalism for studying plasma dynamics in an arc-driven rail gun. A set of
governing equations was derived and solved numerically to determine the prop-
erties of the arc for various rail guns, projectile masses, and accelerating
characteristics. Anproximate analytic solutions to the resulting equations
were also obtained and, from these solutions, some scaling relations were de-
"rived. The extent to which the resulting solutions accurately represent the
arc's characteristics was assessed, and the necessity for extending the work
to two dimensions was emphasized. In this report that extension is under-
taken.

The rationale for the Army's interest in rail guns was thoroughly dis-
cussed in Ref. 1 and will not be discussed here. It is well to point out,
however, that the most successful rail-gun experiments undertaken thus far
have employed a plasma arc to drive the projectile. No doubt the success of
these experiments results from the ability of the arc to maintain better con-
tact with the rails than can the sliding contacts used in solid-armature rail
guns. At the higher velocities anticipated in future experiments an arc arma-
ture is likely to be indispensable. Consequently, it is important to assess
the properties of the arc, to determine its erosive effects on the rails and
projectile, and indeed to determine the feasibility of using arcs in rail guns
sufficiently large to be of military interest.

Before turning to the calculations in this report we will sumnarize some
of the more recent developments in rail-gun technology. Westinghouse, under
DARPA/ARRADCOM support, has nearly completed construction of a large gun in-
tended to accelerate a 300-g projectile to 3 km/s in about 3 m. The current
intention in that experiment is to use a solid armature in the initial stages
but, after transfer of the gun to Dover, some experiments employing an arc are

intended. Arc-driven rail-gun experiments2 have been undertaken most recently
by a team from Los Alamos and Livermore. They have constructed rail guns which
use a magnetic-flux compression generator as a primary power supply, and have
successfully accelerated projectiles of a few grams to several kilometers per
second. In addition, in one experiment, a 165-g projectile was accelerated to
about 350 m/s. The latter effort represents the Post massive projectile yet
accelerated by a rail gun. In addition to these experiments, BRL has recently
initiated an experimental program and has constructed a small rail gun powered
by a capacitor bank. The intention of the present and near-future experiments
at BRL will be to analyze the properties of the arc in some detail, rather
than to accelerate ever-more-massive projectiles to ever-higher velocities.

1. Jo--n D. Powell and Jad H. Batteh, "Plasma Dynamics of the Arc-Driven Rail
Gun," Ballistic Research Laboratory Report No. ARBRL-TR-02267, September
1980. See also "Plasma Dynamoics of an Arc-Driven, Electromagnetic, Pro-
jectile Accelerator," J. Appl. Phys. 5 2717 (2981). (AD A092345)

2. R.S. Hawke, A.L. Brooks, F.J. Deadrick, J.R. Scudder, C.M. Fowler, R.S.
Caird, and D.R. Peterson, "Results of Rail Gun Experiments Powered by
Magnetic Flux Compression Generators," IEEE Trans. Magnetics 18, 821
(1982).
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Some diagnostic measurements have been undertaken already, and more sophisti-
cated ones are planned for the immediate future.

In the present calculation we wish to employ the same model and assump-
tions that were used in Ref. 1. A schematic diagram of the model is shown in
Fig. 1. Sides one and two represent the rails, which are infinitely extended
in the z direction, and which carry current in the direction indicated. Side
three represents the power supply and side four contains both the arc (between
x = x 0 and x = Z) and the projectile (shaded area). The resulting current

K ••configuration produces a magnetic field in the spa.ce between the rails, and
Kthis field interacts with the current through the arc, accelerating both it

and the projectile in the x direction.

The intention of the calculation is to determine the fluid-dynamical pro-
perties of the arc, the electromagnetic fields associated with it, and the
acceleration imparted to the arc and projectile. In Ref. 1, these properties
were assumed to vary only in the direction of acceleration, while in the pre-
sent work variations in one transverse direction, the y direction, will also
be allowed. The additional assumptions employed and justified in Ref. 1 will
also apply to this calculation: First, since the conductivity of the rails is
several orders of magnitude higher than that of the arc, we simplify the prob-
lem by assuming that the rails are actually perfect conductors. The finite
conductivity of the arc, however, is accounted for. Second, we assume that
the plasma is at most doubly ionized and neglect higher degrees of ionizatioi..
This assumption, while not fundamental to the calculation, greatly simplifies
the algebra and is probably not unreasonable in the temperature ranges under
consideration. Third, we assume that energy losses within the arc occur only
by radiation and neglect ordinary heat conduction. As was demonstrated ex-
plicitly in Ref. 1, heat conduction is negligible at the temperatures which
characterize arcs in rail guins of experimental interest. Fourth, we assume
that the current per unit height on the surface of the rails is constant in
time. 1Tis condition can be satisfied in practice by using as a power source
an inductive store having a sufficiently high inductance. We will also assume
in the present treatment that the gas is inviscid.

In addition to the above assumptions, we also assumed in the one-
dimensional calculations that the properties of the arc were steady in a frame
of reference that accelerated with the projectile, and demonstrated that the
governing equations possessed a solution in that limit. In the two-dimensional
case, as we shall see, no such solution exists for the steady situation in
which the arc is at rest relative to the projectile. However, if the effect
of the arc's acceleration upon its fluid-dynamical properties can be neglected,
then a steady solution similar to the one-dimensional case does exist. We
shall assume this to be the case in our actual numerical calcvlations, al-

K though we will derive a time-dependent fornalism in order to make possible
more general calculations in the future. The physical reasons for the differ-
ences between the one- and two-dimensional cases are discussed in Sec. III of
the report, and some discussion of the significance of neglecting the accel-
eration is given in Sec. IV.

Before discussing the present work, it is necessary to indicate the ra-
tionale for undertakirg a two-dimensional calculation and what differences

10
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might be expected with regard to the one-dimensional results. In Ref. 1 it
was demonstrated that of all the energy deposited into the morel rail-gun sys-
tem by the power supply, slightly less than half of the energy became asso-
ciated with kinetic energy of the arc and projectile. An equal amount was
stored in the magnetic field and the remaining onergy, a small fraction of
the total, was dissipated in the arc. In a two-dimensional calculation a
similar conclusion should hold and, since energy must still be conserved, the
projectile sill have essentially the same kinetic energy and an equivalent
amount of energy should be stored in the field. Consequently, the arc pres-
sure, which accelerates the projectile, will have to be similar. On the other
hand, it is evident that more surface area is available for radiation in the
two-dimensional calculation, so the temperature of the arc should be signifi-
cantly smaller. Similarly, the mass density will be targer in the two-

SZ/ X

I/ w

0 x _xz

Figure 1. Model for Arc Calculations
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dinensional case, since it must increase as the temperature decreases to satis-
fy the equation of state (assuming constant pressure and degree of ionization).
It is clear, therefore, that a one-dimensional model probably overestimates
the temperature in the arc, underestimates the density, and gives fairly ac-
curate results for the pressure and fields. However, a two-dimensional model
not only allows for radiatiott at the front and the back of the arc, but also
along the surfaces in contact with the rails. Since these latter surfaces are
usually large in experiments of interest, a significant improvement in the
temperature and density calculations should be anticipated.

In addition, it was found that the one-dimensional calculation predicted
a rather anomalous, nonphysical manner in which the temperature varied with
the length of the arc. Intuitively, one expects that as the length increases
the temperature should fall, since the resistance of the arc becomes smaller.
However, it was shown in Ref. 1 that the temperature remained essentially con-
stant as the arc length was increased. The reason for this unexpected behavior
was that, as the length increased, the temperature gradients within the arc
also became smaller. Consequently, the energy dissipated was radiated away less
efficiently. In the one-dimensional problem the two effects (smaller dissipa-
tion and less efficient radiation) almost exactly compensated each other with
the result that little variation in the temperature was observed. As was
pointed out, however, this unusual effect was just a peculiarity of the one-
dimensional model and, for a two- or three-dimensional case, the temperature
should be expected to fall with increasing arc size. The present calculation,
therefore, should predict in some detail how that variation occurs.

'Me organization of the report is the following. In Sec. II the time-
dependent formalism for treating the two-dimensional problem is developed and
the appropriate set of governing equations derived. In Sec. III, the approxi-
mations employed in the solution of the equations are discussed, and numerical
as well as approximate analytic solutions to the equations are obtained for
several cases of interest. In addition, a set of approximate scaling relations
is derived which indicate how arc properties vary with gun size, projectile
mass, and acceleration characteristics. Finally, in Sec. IV, some discussion
of the results is given.

II. MATHEMATICAL FORMALISM

In this section we will be concerned with deriving the equations which de-
termine the electromagnetic fields associated with the arc, its fluid-dynamical
characteristics, and the acceleration of the arc and projectile. A general,
time-dependent formalism will be worked out here, though additional approxima-
tions will be made in the following section where the solution is carried out.

Applying Maxwell's equations in the space between x = 0 and x = . in
Fig. 1, we have

V x B vij (2.1)

4~ 4

V x E = B (2.2)
at

i1
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and1 4. -4 41.

J o(E + v x B) . (2.3)

In these equations ý represents the magnetic-induction field, • the electric-
field intensity, S the current density, v the plasma material velocity, a the
plasma conductivity, and p the permeability which is assumed to be that offree space. The displacement current has been neglected in Eqs. (2.1I)-(2.3),
since the propagation velocities under consideration are small compared to
the speed of light.

It is convenient to make a transformation to a dimensionless coordinate
system which accelerates with the arc. Specifically, we let

=-; 0 n = y/w (2.4)
a

where Za I. - x is the distance from the projectile to the trailing edge of
a 0

the arc. The transformation is then effected by noting that

a (2.5)

a. a 3 0 a C a a a
at Ytý T, a -I at,a a

where v0 is the velocity of the trailing edge of the arc and where the nota-
tion a/at' is used to denote the time derivative measured in the moving frame.

We now take the curl of Eq. (2.1), note that * is zero, and use Eq.
(2.2) to obtain a differential equation for I in terms of the conductivity
and plasma velocity. After considerable simplification we find that the ap-
propriate equation in the new coordinate system is

2 2 BB 2 3 2B 2 a2B 2 a loga 3BB Z2 a log a aB
xa w Ila -T- - = W77 + I a 2 - K c a an an

a cn

a I W V1-- + -B w

+I ÷ a I w 2 ata DB (2.6)

In writing Eq. (2.6) we have noted that, from symmetry, • has only a single
component in the z direction and have defined v' as the plasma velocity rela-
tive to the trailing edge, i.e.,

13!
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- v - v * (2.7)

Once the induction field has been dete~mined from Eq. (2.6), the current den-
sity I and electric-field intensity ] then follow directly from Eqs. (2.1)
and (2.3), respectively.

The fluid-dynamic properties of the arc are determined largely from equa-
tions which express the conservation of mass, momentum, and energy for the
arc as a whole. Specifically, we have

Ž2- + " (p •) = (2.8)
at

it + P* (2.9)

P - + O " e + * + P:v j 2 /a (2.10)

In these equations p represents the plasma density and e its speqific internal
energy; ý is the second-order pressure or momentum-flux tensor; q is the heat
flux which accounts for losses due to radiation and conduction; finally, I is
the force per unit volume acting on the plasma and, for the problem at hand,
it is given by

I = I x (2.11)

As before, it is convenient to transform Eqs. (2.8)-(2 10) to the moving
frame. Using Eq. (2.5), we find

ap~a 9pa ~ v ataa
ta w- -= -Wv -- v- -y + WE {ap nt (2.12)a at' x Dý a yVW an -ý an at ~ .- (212

av, av -av `
x vx - v

9Pw-~-9 wa- v --I x kpv -- w-
a aw a wp x a a y a at

BB at av,wB 3B a x
wak+ t *rpxw -a (2.13)

Unprimed quantities wiZ1 be used throughout to refer to quantities measured
in the fixed frYame and primed variables to those measured in the moving frame.
In the nonrelativistic limit we have, for example,

14



vv a av 3B
I w --Y- 2 - W vx LL_ v t.Z .

+ P w a4 a (2.14)

and

ae ae t Be aq xZa at w P vx a y an at a all

S.v + w2/a - w a De (2.15)
-wP x a an a

In obtaining the above results we have replaced k by the hydrostatic pressure

P sinc• the gas in inviscid, have used Eqs. (2.1) and (2.11) to express the
force f solely in terms of the induction field, and have denoted by a the
acceleration of the trailing edge of the arc. The resulting equations are
identical to those generally encountered in fluid mechanics except for the
forces which are electromagnetic in origin and except the term proportional

to J 2/a which acc:ounts for the Joule heating of the plasma. It should also
be noted that the term which varies with a is an effective force on the plasma
that arises because the reference frame is not inertial; such a force does
not arise in the more customary laboratory-frame calculations.

Equations (2.12)-(2.lS) are insufficient to determine the flow parameters
uniquely and we need, in addition, the internal energy as a function of P and
the temperature T, an equation of state relating P to T and p, and finally a
representation of the heat flux q. For simplicity, we assume an ideal-gas
equation of state so that

(1 + xI + 2 x2 ) kB T p
P a (2.16)m0

where m0 is the atomic mass of the ions or neutrals constituting the arc, kB

is Boltzmann's constant, and x1 and x 2 are the concentrations of singly and

doubly ionized atoms, respectively. These concentrations can be determined
from the Saha equations which, for a singly and doubly ionized gas, can be

written

3. Y. B. ZeZ 'doviAo "and Y. P. Paizer, Physics of Shock Waves and Hig'h-TeMperature
Hydrodynamic P;enomena (Academic, New York, 1966), Vol. I, Chap. 3.
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x (X. + 2 x 2)

(I - - x2')(1 + . K1 (T, P) (2.17
2(2.17)

-2 1X 2x2
+ll Xl + 2x2,) -2(TP ,

where

"" . 3/2 k 5,2 -li/%T , (2.18)- j~ PZ.K.-- (kBT) e B

In Eq. (2.18), me is the electron mass, h is Planck's constant divided by 27,
and I is the energy needed to ionize the atom j times. The quantity Zj re-

presents the electronic partition function for the Jth ion; specifically, it
is given by

where /kBT
Z. = .g ji (2.19)

where ujis the energy of the ith eleztronic state of the jth ion and where

gji is the appropriate degeneracy factor for this level. Values of these

parameters for copper and its first two ions have been tabulated elsewhere. 4 , 1

In the temperature range with which we will be concerned, the major source
of energy loss within the arc is radiation and ordinary heat conduction can be
neglected. Furthermore, if the radiation mean free path is small compared to
the dimensions of the arc, as we will find to be the case, the radiation flux

can be represented by 5

3
16 aS XT +

q 3 T (2.20)

where a is Stefan's constant and X is the mean free path. Expressions for X

have been worked out and, for the problem at hand, we will use the relation6

X (C 0.91 x l0ol kBT 3 (l+xl1+2x 2 )

P-l- P 1-XX 2 )eIB/kT + 4 x 1e - 2 /k T + 9x 2 eI 3 /JkBT]J

4. C.E. Moore, AtomFic N-srgy Levels," National Bureau of Standards Circ. No.
467, Vol. IT, Washington, DC, 1962.

5. See Ref. 3, Chap. 2.
6. Y.P. Raizer, "Simple Method for Computing the Mean Range of Radiation in

Ionized Gases at High Temperatures," Sov. Phys.-JETP L7_? 769 (1960). See

also Ref. 3, Chap. S.
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The remaining information needed to complete the system of equations des-
cribing the arc properties are expressions for the arc lengtbI ta and the con-

ductivity a. If we Wefine p as the mean plasma density multiplied by itsS~a
length along the x axis, we have the obvious condition

a (2.22)ta =fdt fdn p0t.n)

For all cases of interest in the present problem, we will find that the plasma
is almost completely ionized with few neutrals being present in the arc. Con-
sequently, the conductivity can be well approximated by that for a completely

ionized gas, namely, 7 9

2.63 T102 iT3/ 2  -1_____________[ (123 1

[ log Z J
where Z, given by

Z x1 + 4x2  (2.24)x 1 + 2x 2

is a position-dependent number lying between one and two which is indicative
of the degree of ionization in the gas and YE can be approximated by the value

0.6833. Finally the parameter ne is the electron density in the gas, viz.,

Sp(xI + 2x2 )n = .(2.25)
e m0

Equations (2.1), (2.3), (2.6), (2.12), (2.13), (2.14), (2.15), (2.16), (2.17)
and (2.22), together with the supplementary information Contained in this sec-
tion, should be sufficient to determine the unknowns J, E, B, p, vx X, vy , To

p. Xl, x2 and ta" In the following section several solutions to these equations

are carried out.

7. L. Spitzer, P•yeice of Fully Ioniaed Gase, (Interacienee, New York, 1965),
Chap. 5.

8. R.S. Cohen, L. Spitzer, and P. MaR. Routly, "The Vlectrical Conductivity of
an Ionized Gas," Phtjs. Rev. 80, 230 (1950).

9. L. Spitzer and R. Ram, "Transport Phenomena in a Completely Ionized Gas,"
Phys. Rev. 89_, 977 (1953).
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III. SOLUTION OF EQUATIONS

A. General Remarks and Additiona. Approximations

In Ref. 1 we showed that for a one-dimensional case (no dbpendence on y)
the equations of xhe preceding section possessed a steady-state solution in
which v vanished, and we justified the use of that approximation in analy',ing
the arc's properties. If we mcke a similar assumption in ths two-dimcnsional
analysis, Eqs. (2.6) and (2.13)-(2.15) become

w2 32 B +,2 2B 2 R log a 9 +2 a1 (33Bw-.+ L - w (?.

i •p B 3B" -" P a (3.2)

W P (33)

and

waZT+ a = a w J./o. (3.4)

In these equations, a represents the common acceleration of the arc and pro-
jectile, namely,

U 1 .2
a = (3.S)

ka p

where p, is the projectile density multiplied by its length along the x axis.
p

"Equation (3.1) is t6 be solved subject to the boundary conditions

B(o,n) = PJ

B(l,n) - 0 (')"n= '()r,=1 .0 . (3.6)

The conditions on B are easily derived from Ampire's law, whereas those on

are necessary iii order that the x component of the current density vanish at
the rail-arc interface; otherwise, the associated electric field would produce
an infinite current in the perfectly conducting rails. The conditions obeyed
by P and T are



P(0,n) - 0

T(O,n) = T (l, n) T(E,0) T(E,1) =1 (3.7)

The latter condition, that the arc is in contact with a thermal reservoir at
temperature Tb, is somewhat different from the boundary condition employed in

the calculations in Ref. 1. As has been discussed previously, however, the re-
sults should be relatively independent of boundary temperature and the latter
condition is somewhat easier to treat in the analysis which follows. This
point is discussed further in Sec. III C.

If we now integrate Eq. (3.2) and employ Eqs. (3.6) and (3.7), we find

.2 ( .2P =-" B - Z f o d + J (3.8)
21J a f0d +.2-0

Substituting Eq. (3.8) into Eq. (3.3) leads us to the conclusion that a steady
solution exists only if p is independent of n (one-dimensional limit) or for
vanishingly small values of the acceleration a. The physical reason that no
steady solution (with the gas at rest) can be found is that there exists an
effective force on the arc arising from the last term on the right-hand side
of Eq. (3.2). Although this force lies along the x direction, it will produce
a torque on the arc if the density varies in the y direction and will set the
arc in rotational motion.

Including this rotational motion of the arc, as well as possible time-
dependent effects, greatly complicates the problem. Therefore, as a first ap-
proximation, we will neglect the effect of the arc's acceleration upon its
fluid-dynamical properties, set a = 0 in Eq. (3.8), and find the steady solu-
tion. Consequently, the solution which follows corresponds physically to a
situation in which the projectile is held fixed, but the accelerating current
is allowed to flow. The nature of the approximation is discussed in greater
detail in Sec. IV.

Making use of the approximation discussed above then, we find from Eq.
(3.8)

B2 .2

=P 2 - 2 (3.9)21 2

and this result satisfies Eq. (3.3) automatically. In the most general case,
no additional simplification of the equations results. However, if the con-
ductivity can be approximated by a separable function of • and n so that

a(c, n) ax () W y(n) , (3.10)

1'l

n-



Eq. (3.1) can be solved by separation of variables. We find1
B• u • (&) a x (C) dt S~l

Remarkably, the result is independent of n and is identical to the solution
obtained in our previous one-dimensional calculations, We also find from
Eqs. (2.1) and (2.3)

S ay (3.12)

2a a x df

and 0

[ 1 /1 11= + )Ij v0  a dx oa dj ay (3.13)
.3 ka I aox d C-

Therefore, for the special case in which the plasma conductivity can be
approximated as indicated in Eq. (3.10), the following situation exists. The
magnetic induction varies only in the direction of propagation and no trans-
verse currents exist. Furthermore, although the conductivity is a function of
n, the electric-field intensity also depends on n and in such a way that the
current density is independent of n. Considerable simplification results in
the numerical solution of the equations if the approximation above is made
and for the problem at hand, as we shall see, the approximation is not un-
reasonable. We now turn to a solution of the equations in several cases of
interest.

B. Limiting-Case Analytic Solution

Although we will be concerned primarily with the numerical solution of
the governing equations for reasonably general cases, it is nonetheless of in-
terest to carry out a limiting-case analytic solution. Such a solution is
useful for checking the computational results for the more general cases, for
providing some physical insight into the nature of the solution, and for ob-
taining some approximate scaling relations which will be discussed presently. $
In order to make the analysis possible we neglect the position dependence of
the plasma conductivity, radiation mean free path, and degree of ionization
(i.e., x1 and x 2). Despite the apparent lack of justification for these as-

sumptions, the analytic results will be seen to be in agreement with the more
general numerical results to within at least a few percent.

Under the assumptions discussed above, we have from Eq. (3.11)

B Vj (l-0), (3.14)

and from Eq. (3.9),

20

_ A



p = J2 (C_ 2 /2) (3.1S)

The current density, J, then follows directly from Eq. (3.12), namely,

J = J/1a '(3.16)

Using Eqs. (2.20) and (3.16) in the energy equation, Eq. (3.4), we find

12t +-1___ 0 (3.17)
Za2 C72 w 2 n2 4aS x za

where

t=T 4 T (3.18)

The solution to Eq. (3.17) can be written

4 2 1 1

T4(,n) = Tb 4+ w f de f dn' G(&, n;t',n') (3.19)
b 7 CYS ax 0 0

where G is the Green function for a rectangular surface. One has1 0

_16 00 sin(k7r) sin(k7r') sin(pirn)sin(p~rn)

;;an kp=l (k 2 / A + p2 /w2 )

Carrying out the integration, we find

r 2j 2  sin (k~r) sin(pif )1 1/4

rbT + sa T b k=1,3,5 p=1.,3,S kp(k + w~ p. 2 22 2 3.1

The mass density then follows directly from Eq. (2.16) and (3.15),
2 2

m0iij (V -i /2)
P (1 + x1 + 2x 2 ) kBT (3.22)

with T given by Eq. (3.21). In principle, Eq. (3.22) can now be substituted
into Eq. (2.22) and the resulting integral evaluated. That result would then
be used in conjunction with Eqs. (3.21) and (3.22) to determine the unknowns

10. R. Courant and D. Hilbert, Methoda of Mathematical Physice (Interocience,
New York, 1953), Vol. I, Chap. V.

21



T, p, and Ia independently. In practice the resulting integral cannot be eval-

uated nor can Ia be separated from the infinite series in Eq. (3.21). There-

fore, a numerical solution is necessary even in solving the equations resulting
from this analytic treatment. In two special cases, however, an exact analytic
solution can be found and we now consider these cases.

1. Case I: w>>1 (one-dimensional limit)a

For w>>1a, p2 1a2/w2 is n3gligible with respect to k2 in Eq. (3.21)

for any contributing values of p and k and can be neglected. Furthermore, one
can show that

S~3
sin (pn&)= 7 -3 (3.23)3 k8

k=l,3,5 k8

and

Ssin (pr'n) = w14 (3.24)
Sp=1,3,5

so Eq. (3.21) becomes

T=T + 3j (3.25)b 1 8as o' T 41

Sand Eq. (3.22) becomes

.2 2mo 0/ 1' ( 2/2)
P =1+ +21 j2M C /4 (3.26)

1 [1 8a aJ x 4(-b
(l+X+2X2 )BT

The arc length i can be calculated now by substituting Eq. (3.26) into Eq.
a

(2.22) and evaluating the resulting integral. For purposes of carrying out the
integration, the first term in brackets in Eq. (3.26) is neglected with respect
to the second since the latter term dominates except very close to • = 0 andS=1. Wye find

20 (l+xl+2x 2 ) kB p£ r(1/2)
a (3.27)£a =1mOU3/2Ss o/)1/4 r2(4

where r is the gamma function; the ra~tio r(l/2)/r 2 (3/4) is about 1.2. There-
fore, Eqs. (3.14), (3.15), (3.25), (3.26), and (3.27) provide uncoupled expres-
sions for B, p, T, p and Za"
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2. Case II: w<<Z

The assumption thkt w<<1 is the one most frequently encountered ina

experiments of interest. Under this condition k 2 can be neglected with res-

pect to p 2a 2/W2 in Eq. (3.21) and, using Eqs. (3.23) and (3.24) as before,

we find

T = Tb 12 1/4 (3,28)

and
.2

m0 Ili (C&2/2) 2(3,29)

(1 + Xl + 2x2 ) kBTb [ + 3j2 n (ln)W2]
8as aXTb 41a2

Similarly, calculating the arc length as before, we have

3 (1 xI + 2x 2 ) kB Pt r(1/2) wI/2a

a .3/2 1/4 2 1/2
2m0 11 j (8cS aX/3) r2(3/4) X a

whence

j3(1 + x1 + 2x)k A~ r(1/2)J23 /

= L 2 2  a . (3.30)•a 2m 0 U r (3/4) J j (8crS ax/,5)1

Equation (3.30) can now be substituted into Eq. (3.28) to produce T and into

Eq. (3.29) to produce p.

3. Comparison of Two Solutions

It is interesting to compare the solution obtained in Sec. B.1 (one-
dimensional case) with that obtained in Sec. B.2 (two-dimensional case) in the
light of our remarks in Sec. I concerning the expected differences in the two
calculations. Thus, we see that in this simplified case identical expressions
are obtained for the pressure P and magnetic induction B. For a constant arc
length I a' however, the temperature in the interior of the arc is smaller in

the two-dimensional case than that in the one-dimensional case by a factor
which decreases with increasing arc length. The latter result can be seen by
comparing Eqs. (3.25) and (3.28) in the preceding analysis.
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C. Numerical Tehniue

In the remainder of this section we will discuss more general solutions
to the governing equations for several cases. In particular, it will no longer
be assumed that the conductivity, mean free path, and degree of ionization are
uniform in the arc but, rather, their spatial dependence will be accounted for,
Because of the additional complication introduced, we must resort to numerical
solutions of the equations, and the particular numerical procedure is described
in this section.

We first noted that the previous one-dimensional results suggested that
substantial variations in the flow parameters could be expected very near the
projectile surface, i.e., in the vicinity of E = 1. This problem was dealt
with in the one-dimensional treatment by simply making the step size small.
In two dimensions, however, such a remedy is not practical. Instead, we per-
formed a "stretching transformation" by letting

2 (3.31)

and solved the equations as a function of ý. As can be easily seen,for con-
stant A4' such a transformation has the effect of decreasing the step size near

1 = where rapid variations occur, and of increasing the step size near C = 0
where variations are slower.

We then employed an iterative technique similar to that used in our pre-
vious one-dimensional calculations. Specifically, we divided the E'l plane in-
to a grid and approximated all derivatives by finite differences. The result-
ing coupled equations were then written in the form

Vk (i,j) = F(VI, V2 ... Vk'...VN;ý'n) (3.32)

where Vk(i,j) denotes the kth unknowa (P,T, etc.) at the (i,j)th point and

where F denotes some function of the remaining unknowns, C', and n. The prime
on Vk in the argument of F denotes that Vk(ij) does not appear on the right-

hand side of the equation. Initial values for the variables on the right-hand
side of the equations were obtained from the analytic approximation discussed
in Sec. IIIB, and new values were calculated on the left-hand sides. For the
second iteration, a weighted average of the old and new values was used on the
right-hand sides. The process was then repeated and was found to converge in
a few hundred iterations.

We have performed calculations in w;hich we used the general expression for
the plasma conductivity in Eq. (2.23), as well as calculations in which we made
the separable-conductivity approximation in Eq. (3.10). In the latter case,
a asd a were obtained from the relationsS~x

1 1/2
0 x f a (t,n) dn /<o(t,n)>I (3.33)
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0

where a(E,n) is given by Eq (2.) and where the brackets denote an average
taken over the entire arc. In all these calculations we monitored both the
actual and the factored conductivity and good agreement was found between the
two expressions in all cases. Presumably, the reason for the excellent agree-
ment is that the conductivity is a very slowly varying function in the inter-
ior of the arc, and varies rapidly only with & or n, but not both, near the
boundaries. The advantage of using the factored conductivity is that the iter-
ative procedure converges far more rapidly than in the more general case, no
doubt because of the absence of small transverse currents. In most of the re-
mainder of the discussion we will confine ourselves to results in which the
separable-conductivity approximation was made. In Sec. IV, however, some qual-
itative results of the more general case are discussed.

We have performed calculations using a variety of step sizes for At' and
An and have found that the values At" = An = 0.02 gave acceptable results in
a reasonable calculation time. When At' or An was increased by a factor of
two, for example, we observed changes in some variables by as much as 3 or 4%
from results obtained at the smaller step size. Most quantities were in sub-
stantially better agreement than that, however, and we assumed that values of
At" and An given by 0.02 were sufficiently small.

As has been emphasized before, the fluid-dynamic variables within the arc
are nearly independent of Tb provided the boundary temperature is small with

respect to the maximum temperature within the arc. Under these conditions
the arc temperature is determined by the rate of energy dissipation only, and
the boundary temperature has negligible effect. On the other hand, in the num-
erical calculations it is desirable to have the boundary temperature as large
as possible in order to avoid numerical difficulties that may arise from steep
temperature gradients near the boundaries. Therefore, in the numerical calcu-
lations we set Tb equal to some fraction of the estimated maximum temperature

within the arc, and then lowered the value until further reduction produced no
appreciable change in the arc properties. In practice, reasonable values of
the boundary temperature were found to be about 50% of the maximum temperature
in the arc.

D. Analysis of Rashleigh-Marshall Experiment
11

In a recent experiment Rashleigh and Marshall (RM) have employed an arc-
driven rail gun to accelerate a 3-g projectile to about 6 km/s. The arc con-
sisted of partially ionized copper vapor. In an effort to analyze the arc in
that experiment, we have solved the two-dimensional equations for determining
the arc properties for a set of input data roughly equivalent to the RM data.

The appropriate data are shown in Table I. All quantities were either
taken directly from the experimental specifications or easily calculated there-
from. The parameter h is an effective rail height necessary for use in the

11. S.C. Rashleigh and R.A. Marshall, "Electromagnetic Acceleration of Macro-
paaticles to High Velocities," J. Appl. Phys. 49, 2540 (1978).
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TABL• 1. Experimental Data for Rashleigh-Marshall Experiment.

Quantity Description Value

w Rail separation 1.27 x 10.2 m

h Plasma height on rails 1.27 x 10"2 m

hr Rail height 1.91 X 10-2 m

h Effective rail height 1.56 x 10 2 m

mp Projectile mass 3 x 10-3 kg

i Pulsed current 3 x 105 A

Current per unit height 1.92 x 107 A/m
on rails

V0  Muzzle voltage 160 V

S ma Arc mass 2 x 10-4 kg

, 0  Ion (or atom) mass 1.1 x 10 "251kg

a Average acceleration 6 x 106 m/s2

PI (See Eq. (3.5)) 0.51 kg/mr2

a
Ct (See Eq. (3.5)) 15.1 kg/m2

p

calculations since the quantities hp and hr, defined in the table, were assumed

to be equal in the model. As can be seen, h was chosen to be the geometric
mean of the two experimental values. The arc mass ma was unknown experiment-

ally btt we used a value, found by trial and error, which gave an arc length
I a of about 10 cm. Finally, the experimental quantity V0 represents the poten-

tial measured across the end of the rails. The theoretical value can be ob-
tained from Eq. (3.13) by evaluating the expression at E = 1 and noting that

1
V0 a w f E (l,n) dn (3.35)

Typical results obtained from~ the numuerical calculation are shown in Table
II for quantities which are independent of position. The acceleration a is
about a factor of two and one-half higher than the exporimental value of 6 x

106 m/s2 . The lack of agreement no doubt results because the use of Infinitely
high rails overestimates the acceleration imparted to the projectile, and
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TABLE II. Results of Numerical Calculations for Rashleigh-Marshall
Experiment

Quantity Value

a 1.5 x 107 M/s2

Z 9.8 cm
a

<Z> 1.61

<T> 3.7 x 104 K

26 -3<n > 1.4 x 102 m-
e

V0  50 volts

because of the somewhat arbitrary manner in which the effective height h was
chosen. In a similar manner the calculated potential V0 is about a Factor of

three lower than the experimental value shown in Table I.

The remaining quantities in the table are largely self evident. It is of
interest, however, to compare them with the corresponding results obtained in
the previous one-dimensional treatment for an arc of roughly the same length.
As expected, we find that the mean temperature of 37,000 K is substantially

0lower than for the one-dimensional case in which we found <T> = 57,000 . As a
result of the lower temperature, the mean ionization <Z> is also lower than
the one-dimensional value of 1.93. Since the pressure should be nearly the
same in the two calculations, as we indicated before, the mass density in the
arc should be higher than in the one-dimensional case in order to satisfy the
equation of state and, therefore, the electron density is also higher. Thus,

we found <n > = 9.9 x 1025 m-3 in our previous treatment and this value is in-e 0 3
deed smaller than the present value of 1.4 x 10 m . Finally, we observe
that the potential V0 is roughly the same in the two calculations (50 volts

compared to 47 volts). It is perhaps surprising that the potential is not sig-
nificantly higher than that in the one-dimensional case since the conductivity

3/2of the arc varies as T . However, in this particular temperature range, the
degree of ionization is also smaller and there are, consequently, fewer colli-
sions among the electrons. The reduced scattering tends to increase the con-
ductivity and this effect nearly compensates for the effect of the reduced
temperature. Thus, little change in the conductivity results.

Graphs of the position-dependent quantities are shown in Figs. 2-6. For
the pressure and magnetic induction, graphs are drawn as a function of ý.
These quantities do not depend on n when the conductivity is approximated by
a separable function, and only weakly so when the more general expression is
used. This behavior, incidentally, is indicative of our earlier statement
that only small differences between these parameters should be expected in the
one- and two-dimensional calculations.
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The pressure, shown in Fig. 2, rises monotonically from zero at the back
of the arc to about 220 MPa at the projectile surface. Its functional depend-
ence may be compared with the approximate analytic form in Eq. (3.15). Simi-
larly, the magnetic induction field varies from about 24 Tesla at the trailing
edge of the arc to zero at the projectile surface. If the conductivity of the
arc were constant, the variation between these two values would be linear.
The fairly weak dependence of the conductivity on position, however, gives xise
to the small deviations from linear behavior observed in the graph.

In Fig. 4, two-dimensional effects of the temperature profile are shown
by plotting isotherms within the arc. Here, unlike for the pressure and fields,
significant variations of the temperature were observed as a function of J, par.-
ticularly near the surface of the rails. It may furthermore be noted that there
is a high concentration of energy near the projectile surface, with a very steep
gradient as the surface is approached. The high temperature near the surface
can be explained by noting that there is an increase in mass density with in-
creasing ý (see Fig. 5) and, consequently, a decrease in the radiation mean
free path. Thus, photons created in the right-most part of the arc are radiated
away with more difficulty than those in the left-most part. Once the photons
are within a mean free path or so of the boundary, however, they can essenti-
ally "see', the boundary and are easily radiated outward. Therefore, the tem-
perature drops rapidly very near the projectile surface. The maximum tempera-
ture in the arc was found to be about 46,000 K whereas in our previous one-
dimensional work the maximum was observed to be about 70,000 deg. As noted
earlier, the temperature was expected to be smaller for the two-dimensional
calculation.

In rig. S are plotted lines of constant mass density. The density may be
seen to vanish at the back of the arc and, as in the temperature plot, a rather
rapid variation in the density is observed near the projectile surface. The in-
crease there results because, as the temperature falls, the degree of ionization
also falls, and both these effects tend to reduce the pressure at the projectile
surface. Therefore, a steady pressure can be maintained at the surface only if
there is a proportionate increase in density there.

Finally, lines of constant electron density may be observed in Fig. 6.
The curves are similar to those for the mass density but the gradient near
S= 1 is significantly less pronounced. The reason for the smaller gradient,
of course, is that the ions near the projectile surface are less highly ionized
than those in the interior of the arc because of the lower temperature.

E. Analysis of Westinghouse Experiment

In addition to the analysis of the arc in the Rashleigh-MarshalI experi-
ment, we have also performed calculations to determine the properties of an
arc for a rail gun comparable in size to that under construction at Westing-
house. Tpical input parameters, again taken largely from the experimental
specifications, are shewr, in Table III. As in the RN case, the parameter pi

a
was chosen by trial 4nd error to produce an arc length of roughly ten centi-
meters; the pulsed current J was Phosen so as to produce an acceleration suf-
ficient for the projectile to reach a velocity of 3 km/s in a distance of 4m.
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TABLE III. Experimental Data for Westinghouse Gun.

Quantity Description Value

w Rail separation 5.0 x 10-2 m

h Rail height 5.0 x 10- 2 m

m Projectile mass 0.3 kg
p

5
i Pulsed current 7.35 x 10 A

j Current per unit height on rails 1.47 x 107 A/m

ma Arc mass 1.2 x 10-3 kg

p9 (See Eq. (3.5)) 0.48 kg/mr2

PE (See Eq. (3.5)) 120 kg/mr2

Position-dependent quantities in the calculation vary in essentially the
same manner as for the RM case, so the significant results will be presented
only in tabular form. These results are shown in Table IV. The results

TABLE IV. Results of Numnerical Solution for Westinghouse Gun.

Quantity Value

a 
1.13 x 106 m/s 2

I a9.9 cma

V0  171 volts
S<T> 4.2 x 104°

4<Tx14. K

4T 5.2 x 10 'Kmax

2 -3

<n > 8.0Ox 102
e

16 026 m-3

P 17.0 kg/m
max

S<Z> 1.83

P M.X 1.4 x 108 Pa

B 18.4 T
max

34.



should be compared with those in both Table II and in Figs. 2-6. The magni-
tudes of the various flow parameters are sufficiently similar to those obtained
in the RM experiment to suggest that no major difficulties should be expected
in using an arc armature in this larger gun. It is interesting to note, how-
ever, that the two-dimensional model predicts a slightly higher temperature for
the large-gun arc than for the RM arc, the opposite of the prediction in the
one-dimensional case. The reasonas for "che contradictory predictions as well
as some other results of the calculation will be made clearer in the following
section where some approximate scaling laws will be derived.

F. Scaling Relations and Optimum Arc Materials

The numerical calculations undertaken previously are difficult to carry
out and computationally rather inefficient. It is of interest, therefore, to
attempt to derive some approximate scaling relations which indicate how arc
characteristics vary with experimental parameters. Such a set of relations can
be derived from the special-case analytic solution presented in Sec. IIIB if
some additional assumptions are made, and if either Zaw or Z a>w. In par-

ticular, we make the following additional approximations: (1) In order to ac-
count to some extent for the temperature dependence of the conductivity in the
results of Secs. IIIB.1 and IIIB.2, we assume

a a T3/ 2/Z (3.36)

and neglect the logarithmic term in Eq. (2.23). (2) We note that the radiation

mean free path X in Eq. (2.21) varies approximately according to the relation6

2 T7/2
m0 T

2 02 (3.37)
P <j> (<j> + 1)

where <j> for this case can be approximated by

<j> = x1 + 2x 2  . (3.38)

(3) Finally, we note that the parameter <j> can be well approximated by the
parameter Z (see Eq. (2.24) if either single or double ionization is dominant.
In order to simplify the results as much as possible, we will assume this to
be the case.

If we make use of the assumptions noted above in the results of Secs.
IIIB.l and IIIB.2 and solve the coupled equations for the unknown quantities,
we obtain the scaling relations indicated in Table V. The results should be
reasonably valid provided they are applied not too close to the arc's boundar-
ies. In order to use the table to predict some quantity of interest for a case
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TABLE V. General Scaling Factors

Quantity a<< w (D Limit) Ia>> w

B j j

p2 .2
t3

+a J2 /(P + P )J +(

(1 Z)2A 1  X ' a

;p a p a

T 16/11Z2/11 10/13 w12/13 12/13 m02/13

(I + Z) 2/13' P 2/'13'

a

m o0 j 6 / 1 1 
m o l/ 13 j16 / 1 3 922 / 1 3

(1 + Z) Z2111 w2/13 Z2/13 (1 + Z)11/13

+-..1 11/13 2/13 /13 11/13
S(1 w Z) Z2 1 k+Z)

Sa a
a N j 16/11 m 11/13 i 16/13

8lg/ll z6/11 mo w8/ 1 3  8/3 j 1 4/ 1 3  8/13
•i V8/13- Z8/13

Za (1 + Z) Pt (I + Z)
a

.16/13 2/13 z1 1 / 1 3

.16/11 Z9/ll Pta Z

ne"1 + Z 2/13 2/13 11/13w1• Zm 0 (1 + Z)

in which no numerical calculations exist, the following procedure is followed.
The value of a particular quantity in the RM experiment (column 1) is multi-
plied by ratio of the scaling factors for the unknown and RN cases. The re-
sult, then, is the value of the parameter of interest in the unknown case.
The degree of ionization, Z, is not easily expressible as a function of the
experimental quantities as are the other unknowns. Fortunately, however,.
large changes in this parameter do not occur even with fairly significant
changes in the experimental conditions, and it can often be treated as a con-
stant in the two cases of interest.
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The results in Table V are general and, except for their dependence on Z,
depend only, on the experimental conditions. In the calculations undertaken so
far, however, we have varied the experimental. parameter, p, , in order to main-

a
tain a constant arc length of roughly 1O cm. It is, therefore, of interest to
determine scaling relations as a function of arc length and treat X a as an ex-

perimentally determined quantity. To do so, we solve for p9I in terms of X aaa

(see the sixth entry in rable V) and substitute the res'alt elsewhere in the
table. We then obtain the results shown in Table VT.

TABLE VI. Scaling Factors as a Function of Arc Length.
0a<<W >>w

Quantity a a

Bjj
p.2 .2

P 2 2

aj 2/(Pk + Pt .  2/(p 9 .  + P9z
a p a p

T 6/11 z2/11 .6/11 z2/11 (W/z a) 2/ll

M0 j 16/11 . 16/11 Z/)210 J•111 2/1 a'

(I+Z) Z /l+Z) Z+

2/11 Z8/11 w j2/11 z8/ 1 1  Z a 3/11
V0  z t 1

a a

.16/11 Z9/11 .16/11 z9/11  ka 2/11
ne a

n e~ (1 +Z) ~L7+Z w

To demonstrate the application of the table we have used it to determine
approximate results for the Westinghouse experiment, using the numerical re-
sults for the RM case. Shown in column 2 of Table VII are numerical results
for the R1 experiment. In column three we have repeated, for convenience, the
numerical results for the Westinghouse case (see Table IV). In column four
are numerical values of the scaling-factor ratios (see Tables I, I11, and VI).
Finally, in column five are the results for the Westinghouse experiment as pre-
dicted by the scaling relations. Comparing columns three and five we see that,
except for the potential V and the electron density ne, the agreement is ex-

cellent. The lack of agreement in the last two quantities results because
they are fairly sensitive functions of Z, and this parameter does change some-
what in the two cases (see Tables II and IV for comparison of actual numerical
values). In addition, the condition X a >>w, required for the validity of these

relations, is not strictly valid for the case at hand.
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Finally, it is of interest to ask what the scaling relations predict con-
cerning the optimum materials to use for the arc. In particular, it has been
suggested in the past that it might be desirable to use some substance that
is more easily ionized than copper, say potassium or cesium, and attempt to
obtain equivalent conductivity at substantially lower temperatures. Unfor-
tunately, as can be seen from Table VI, use of these substances having low
ionization potentials will probably not make any appreciable difference in the
final temperature of the arc. The reason is that temperatures associated with
the arc in any practical experiment are always sufficiently high that almost
complete ionization of the arc is obtained. Once the condition has been
achieved, additional increases in the electron density, which would accompany
lower ionization potential, do not result in higher conductivity and lower tem-
peratures. In fact, as can be seen from Fq. (2.23), as Z becomes larger, the
conductivity actually decreases. Referring to Table VI,. it is evident thnt
the temperature is controlled largely by the current and, to a significantly
smaller extent, by the length of the arc, the rail separation, and the degree
of ionization Z. High currents are, of course, necessary to achieve the high
accelerations required so we have little control over this parameter. Very
small changes in the temperature cart be obtained by varying the other three
parameters, however, and it is generally desirable to make the length of the
arc as long as possible, the rail separatiLon as small as possible, and to
choose as the arc material a substance havipg a hip second-ionization Poten.-
tial. Again, however, making the optimum choices is not going to change the
temperature significantly as is evident from the table. Doubling the arc
length, for instance, for a situation in which Z is held constant,results in a
temperature reduction of only about 12'.

To demonstrate the validity of these remarks, we have also performed some
numerical calculations for the RM gun using potassium vapor for the arc, rather
than the copper vapor used previously. The first and second ionization poten-
tials for potassium are 4.3 eV and 31.8 eV, respectively, and its atomic mass
is 39. Corresponding values for copper are 7.7 eV, 20.3 eV, and 64. For con-
stant arc length (,, 10 cm), very small differences were noted in the tempera-
ture in the two calculations. In fact, the only parameter in Table VI which
changed more than a few percent was the mass density p. It was found to be
about a factor of two smaller for the potassium arc than for the copper arc.
The result is predictable from Table VI and can be ascribed to the smaller
atomic mass, mi0 , for potassium.

IV. DISCUSSION

In Ref. 1 we discussed in some detail the assumptions employed in the one-
dimensional calculation. For the most part, that discussion applies to the
two-dimensional case as well. Therefore, in this section we will confine our-
selves to summarizing the results of the two-dimensional calculation and to
discussing only assumptions pertinent to that case.

We have derived a general, time-dependent formalism for studying arc dyna-
mics in two dimensions. For purposes of carrying out the calculation, we have
neglected the effect of the arc's acceleration upon its fluid-dynamical charac-

teristics, and have assicmed that those characteristics are steady in a frame



of reference moving with the arc. The latter assumption was also made in our
previous one-dimensional treatment. The resulting governing equations were
then solved to analyze the arcs both in the RV experiment and for a gun com-
parable in size to that under construction at Westinghouse. From approximate
analytic solutions to the governing equations, some approximate scaling rela-
tions were derived and these relations were shown to yield results in reason-
ably good agreement with the more general numerical solutions.

The assumption that a is negligible in the governing equations may be
viewed as the lowest-order approximation i n any of an infinite number of
perturbation-expansion solutions, valid for small values of the acceleration.
For example, if one assumes that all the time-derivative terms in the equations
(including the velocities) are small, as in a quasi-static approximation, a
reasonably straightforward expansion of the equations can be obtained, with the
equations actually solved corresponding to lowest order. Higher-order approxi-
;nations can also be written down in such an expansion, but the results quickly

become quite tedious. 1 2 At any rate, it is clear that there is no steady solu-
tion in higher orders of the two-dimensional problem for a situation in which
the gas is at rest relative to the projectile. This situation may be contrast-
ed with the one-dimensional case where such an expansion may also be carried
out. In this instance, however, one finds a steady solution to the governing

equations in all the higher orders. Moreover, it is also found12 in this case
that the lowest-order terms are an excellent approximation to the exact solu-
tions; the two results differ by only a few percent.

We should also point out that a steady solution may exist in the two-
dimensional case for a situation in which the arc is in motion relative to the
projectile, provided that motion is itself steady. One might envision, for ex-
ample, two counter-rotating flows in the arc with the velocity as a function
of position remaining constant in time. The counter-rotation is necessary, of
course, to conserve the arc's total angular momentum.

It is of some interest to attempt to estimate the conditions under which
the velocity might be expected to be small in such a situation. To do so, we
first of all note that p \, p /L, where L is some distance characteristic of

a

the arc dimensions, whereas P and the field-dependent terms in Eqs. (2.13) and
(2.14) are of the order of p£ a. Consequently, one can neglect the term p£ wa,

a a
as well as terms containing v' and v', in the momentum-conservation equations

x y
provided p /p< 1. This condition is satisfied in most cases of interest.

In order to determine the conditions under which the "rotational" velocities
, and v' are negligible in the energy equation, Eq. (2.15), we assume

}y

12. Author's"npublished calculations.
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x 1 + 2x N 2

e , 9 kBT/ 2 m0  (4.1)

J Au j/L

AT ^- T/2

where AT represents the change in T in a distance comparable to L. Using
these assumptions, along with Eqs. (2.16) and (2.20), we estimate from Eq.
(2.15) that

2c7 L p a2 1/4 Z2P rv 1/
T 2L a cOX 1 2(.2

P2

B 2j

where v stands for rotational velocity. Clearly, to neglect v we must haver r

Vl << (•oLo2 (4.3)
UFotnatly, tdetermine conditions under which we can neglect rotational veloci-tiesforpurpsesof determining the magnetic-induction field, we assume

and conclude from Eq. (2.6) that we must have

V r < (ijo) 1 2  (4.5)

Unfortunately, it is difficult to obtain reliable estimates of v .An upper
bound is probably some number of the order of r

vr N (aL) 1/2 (4.6)

for this value of vr Eqs. (4.3) and (4.5) are not well satisfied for all cases

of experimental interest. It is likely, however, that vr is sizably smaller

than the value suggested in Eq. (4.6) and, for more realistic values of this
parameter, Eqs. (4.3) and (4.5) may be easily satisfied. Some further study of
this problem, as well as the question of whether a steady state can even exist,
is evidently desirable and is deferred to future work.

41



As pointed out previously, all calculations discussed here are ones for
which the separable-conductivity approximation in Eq. (3.10), was made. How-
ever, we have also carried out calculations using the more general expression
for the conductivity. For these latter calculations, we obtained nonzero
values of Jx as well as some n dependence in both B and P. The magnitude of

Jx' however, was some four orders of magnitude smaller than that of Jy and
the n dependence of both B and P was negligible. These results clearly demon-
strate that the separable-conductivity approximation is quite good for the
problem at hand; monitoring both the factored and the actual conductivity in
our numerical calculations led us to the same conclusion. As a point of
academic interest, it is perhaps worth mentioning that the small values of J

are such that they give rise to a total current density 3 which flows toward
regions where the conductivity is high.

In Ref. 1 we pointed out that a one-dimensional model could be expected
to substantially overestimate the mean temperature within the arc, because
only two surfaces of the arc were available for radiation in such a model. It

was pointed out that the mean temperature should vary roughly as A-1 / 4 , where
A is the surface area available for radiation. Consequently, we would expect

T A• 1I1/4
T1 A (4.7)

1 3

where

A1 = 2 h w (4.8)

A3 = 2(Za w + Za h + hw) (4.9)

and where T and T denote the mean temperatures in the one- and three-

dimensional cases, respectively. For the RM data, we have (A1/A3 ) 11 4 ), 1/2, so
one expects a three-dimensional treatment to yield a temperature a factor of two
or so smaller than obtained in the one-dimensional case. However, we also have

A2 = 2(hw + Za h) (4.10)

and (A3/A2) /4 1.15 for the RM case. Therefore, the expected difference in

temperature obtained in a two- and three-dimensional treatment is only about
15%. Thus, the results of the two-dimensional calculation are probably a far
more accurate representation of the arc's actual properties than are the one-
dimensional results and they are, furthermore, probably not too far from re
sults that would be obtained in a three-dimensional treatment. It is of in-
terest to note that for the RM data
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l4'

(AI/A 2 ) 1 / 4 , 0.58 (4.11)

whereas the ratio of the mean temperature in the two-dimensional and one-
dimensional calculations (37,000 *K and 57,000 'K, respectively) is 0.65
The two numbers are in fairly close agreement.

In the near future a number of calculations will be of interest. It is
first of all desirable to consider higher-order terms in the governing equa-
tions in order to include the effects of the rotational motion of the arc dis-
cussed previously. It is not likely that these effects will produce any major
change in the arc's fluid-dynamic properties, but the importance of the ef-
fects does need to be assessed. Second, it will be of interest to study the
effects of the plasma upon the projectile and rails. These calculations will
provide a first step in evaluating the erosive effects of arc. Finally, some
future consideration should be given to time-dependent effects. Only through
such treatments can we study the formation and early development of the arc
and assess the validity of the steady-state assumption. These problems are
slated for study in the near future.

NOTE ADDED IN PROOF: Since completion of this work, the Westinghouse rail gun13
has been completed and fired several times. In the most successful firing,
P 31 7 -g projectile wa, accelerated to a velocity of 4.2 km/s in a distance of
about Sm. The resulting projectile energy is the largest yet achieved by a
rail gun, and the experiment represents a remarkable advance in rail-gun tech-
nology.
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